
OWASP Top 10
Vulnerabilities List

Your handy security checklist

https://gitprotect.io/


OWASP Top 10
Vulnerabilities
List

Broken Access ControlA01:2021

A02:2021 Cryptographic Failures

A03:2021 Injection

A04:2021 Insecure Design

A05:2021 Security Misconfiguration

A06:2021 Vulnerable and Outdated Components

A07:2021 Identification and Authentication Failures

A08:2021 Software and Data Integrity Failures

A09:2021 Security Logging and Monitoring Failures

A10:2021 Server-Side Request Forgery (SSRF)

https://gitprotect.io/


Broken Access
Control

A01:2021

Deny access by default

Implement proper access controls
throughout the application

Restrict access to APIs and controllers

How to prevent?

https://gitprotect.io/


Cryptographic
Failures

A02:2021

Categorize information that an application
processes, stores, or transmits.

Follow the necessary security measures based
on the classification of the data

Encrypt all sensitive data that is saved

How to prevent?

https://gitprotect.io/


Injection
A03:2021

Harness the Strength of Secure APIs

Enforce Whitelist Validation

LIMIT and other SQL controls act as powerful
guardians against injection attacks

How to prevent?

https://gitprotect.io/


Insecure
Design

A04:2021

Implement Secure SDLC

Leverage Threat Modeling and Secure
Patterns

Integrate Security into User Stories

How to prevent?

https://gitprotect.io/


Security
Misconfiguration

A05:2021

Establish a repeatable security hardening
process, preferably automated

Remove unused or unnecessary features,
components, and files

Implement an automated process to review
and maintain security settings across
environments

How to prevent?

https://gitprotect.io/


Vulnerable
and Outdated
Components

A06:2021

Remove unused or unnecessary libraries,
components, frameworks, documentation,
and files from the application

Maintain an inventory of both server-side
and client-side components and regularly
monitor for updates and vulnerabilities

Use official libraries and sources through
secure links

Monitor for unsupported libraries and
components that are no longer maintained
or have reached the end of life

How to prevent?

https://gitprotect.io/


Identification
and Authentication
Failures

A07:2021

Implement multi-factor authentication to
add an extra layer of security.

Avoid using default credentials, especially
for administrative accounts

Take steps to limit account enumeration,
making it difficult for attackers to determine
valid usernames

How to prevent?

https://gitprotect.io/


Use digital signatures or other verification
methods to ensure software updates originate
from trusted sources and arrive intact

Verify that third-party libraries and
dependencies come from legitimate sources

Use automated security tools designed for the
software supply chain to scan for vulnerabilities
in third-party resources

Implement secure deserialization practices to
prevent code execution vulnerabilities

How to prevent?

Software and
Data Integrity
Failures

A08:2021

https://gitprotect.io/


Security Logging
and Monitoring
Failures

A09:2021

Implement comprehensive security
logging and monitoring across applications

Log important events with user context
to preserve evidence of malicious or
suspicious activity

Generate logs in a format compatible with
log management tools.

Enable monitoring and alerting for
suspicious activities

Develop an incident response and
mitigation plan to respond effectively to
security breaches

How to prevent?

https://gitprotect.io/


Server-Side
Request
Forgery (SSRF)

A10:2021
Utilize network segmentation to separate
remote resources and sensitive internal
systems

Adopt "deny-by-default" policies to block
nonessential traffic and restrict access to
trusted sources

Network-level prevention:

Preventing SSRF requires implementing protection
measures at both the network and application levels.

https://gitprotect.io/


Implement thorough data input
sanitization, validation, and filtering to ensure
the legitimacy of user-supplied URLs

Disable HTTP redirection at the server level to
prevent attackers from manipulating the
destination of requests

Ensure server responses conform to expected
results and avoid exposing sensitive information.
Raw server responses should never be directly
sent to the client

Application-level prevention:

https://gitprotect.io/


MULTILAYERED APPROACH TO WEB APPS SECURITY

Neutralizing risk factors and vulnerabilities

Code protection: repositories and metadata backup

Always-ready approach for data loss event:
disaster recovery, ransomware protection, data
migration, and more.

https://gitprotect.io/use-cases/disaster-recovery.html


https://gitprotect.io/

